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In this paper we present experiments and an analysis of interfacial waves in 
core-annular flow ; these waves are important for the flow to be stable. The observed 
wave velocity is about equal to the speed of the fluids near the interface, and the 
wavelength is 1-10 times the thickness of the annulus. These results are predicted by 
our analysis, which is valid provided the Reynolds number of the fluid in the annulus, 
and the ratio of the viscosities of the fluids in the core and the annulus, are large. The 
theory gives the growth rate of a wave as a function of this ratio, the Reynolds 
number, the surface tension and the wavenumber. For parameter values of interest, 
the growth rate is positive for a range wavenumbers which we compare with the 
experiments. Qualitative agreement between theory and experiment is excellent ; 
quantitative comparison reveals discrepancies for which a possible explanation is the 
neglect of nonlinear terms. 

1. Introduction 
For the transportation of very viscous crude oil, core-annular flow (CAF) can be 

an attractive alternative to heating or diluting the oil (see, for example, Wu et al. 
1986). In lubricating CAF, the core (for example oil) is surrounded by a less viscous 
annulus (for example water). The fluid in the annulus reduces the pressure drop over 
the pipeline to the same order of magnitude as when only the less viscous fluid is 
present. Owing to the complicated hydrodynamics of CAF, the buoyancy on the core 
can be counterbalanced by pressure and viscous forces, resulting in a stable flow. It 
has been shown (Ooms et al. 1984; Oliemans & Ooms 1986) that waves on the 
oil/water interface play a crucial role in that balance. This leads to the paradox that 
the stability of CAF depends on the instability of the oil/water interface. The growth 
rate of interfacial waves is exponential in time according to linear theory. Of course, 
once the wave amplitude becomes finite, nonlinear effects will become important. 
These effects can saturate the linear growth (see, for example, Papageorgiou, 
Maldarelli & Rumschitzki 1990), resulting in waves with finite amplitudes and stable 
CAF, as observed in experiments (figure 1) with viscosity ratios ranging from 500 to 
more lo5. 

In this paper we present a linear analysis of the interfacial stability of oil/water 
CAP, together with experiments to study the waves at the interface of oil and water. 
The experiments were performed in two test loops, described in $2. Wavelengths and 
the average water layer thickness were measured. Characteristic values of the 
physical parameters involved are: pipe diameter x 0.1 m, oil velocity x 1 m/s, oil 
density z 970 kg/m3, oil viscosity x 10 Pa s, water fraction in the pipe < 0.15, water 
layer thickness d x 0.5-5 mm. The Reynolds number for the water layer then is 
R = 0(103), the ratio of the viscosity of oil and water is m = 0(104), and the ratio of 
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FIGURE 1. Waves observed in oil/water coreannular flow in a 2 in. pipe (flow direction from right 
to  left). The superficial oil velocity was 0.5m/s, and the oil viscosity was 3.5Pas. For this 
experiment a water fraction of 0.2 was used. 

the radius of the oil core and the water layer thickness is n > 10. Observed 
wavelengths h were typically of the order of ten times the water layer thickness, that 
is of the order of the pipe radius, giving a dimensionless wavenumber a:= (27c/h) d 
of the order of one. 

The difference in viscosity between the fluids is an important cause of instability 
(Yih 1967). As already mentioned, for crude oil and water the viscosity ratio can be 
very large, more than lo5 for very viscous crude oil. The instability exists irrespective 
of the magnitude of the Reynolds number, and is therefore not the high-Reynolds- 
number instability observed in Poiseuille flow, but rather the viscous analogue of the 
Kelvin-Helmholtz instability. There is an extensive literature on the analysis of the 
instability of a liquidlliquid interface due to a viscosity difference, which can be 
divided roughly into five groups : papers studying by asymptotic means the stability 
of the interface with respect to  perturbations that are ‘long’, ‘short’ and 
‘intermediate ’ in length, papers studying the stability numerically, and papers 
dealing with nonlinear theory. We will review each group and discuss their relevance 
to our experiments. 

Yih (1967) considered two-dimensional plane Couette-Poiseuille flow of two 
superposed layers of fluids of different viscosities between two horizontal plates. His 
analysis applies to the stability of the interface with respect to ‘long’ waves, that is 
waves that are much longer than Max ( 2 x 4  Ri), where di and Ri are thickness of the 
layer and the Reynolds number of fluid i ( i  = 1,2) ,  respectively. Under this 
condition his analysis is valid for all ratios of the viscosities of the two fluids and for 
all ratios of the thicknesses of the layers. Flows with a thin layer of less viscous fluids 
a t  a wall, corresponding the most closely to what we have called lubricating flow, are 
found to be stable to these long-wavelength perturbations. In agreement with this, 
the waves we observe do not satisfy the long-wave conditions mentioned above. They 
are therefore not likely to be explained by a long-wavelength instability. Hooper 
(1985) studied linear stability of Couette flow for ‘long’ waves if one of the fluid 
layers is very thin compared to t.he other layer. She found that the flow is always 
unstable if the fluid in the thin layer is the more viscous one. Than, Rosso & Joseph 
(1987) extended the analysis of Yih (1967) by considering plane Poiseuille flow of two 
fluids in three layers, again restricting perturbations to long waves. For these 
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perturbations they showed that the interfaces for flow with the high-viscosity fluid 
centrally located (lubricating flow) are always stable, while interfaces for a flow with 
the less viscous fluid centrally located are unstable. With respect to long waves, 
Hickox (1971) considered the problem for a cylindrical geometry and axisymmetric 
undisturbed flow. However, he only evaluated his expressions for cases where the less 
viscous fluid is located centrally, and found that in that case the interface is never 
stable. Joseph, Renardy & Renardy (1984) studied numerically, and excluding 
gravity and surface tension, the configuration studied by Hickox (1971), but with the 
more viscous fluid located centrally and for viscosity ratios of O(1). Like Yih (1967) 
for a two-dimensional geometry, they found that the interface for this flow is stable 
with respect to long waves if the annulus is thin. This is again consistent with the fact 
that we do not observe ‘long’ waves. 

Hooper & Boyd (1983) studied the stability of the interface of two fluids of 
different viscosity in an infinite region, for two-dimensional Couette flow. They also 
considered the energy equation for this type of flow. If surface tension is neglected 
the interface is always unstable to waves of very small wavelengths. With respect to 
CAF this geometry seems to apply only if the waves are ‘short’, i.e. much shorter 
than the thickness of the thinner layer (the annulus). However, as we will see, these 
waves are stabilized by surface tension. Furthermore, Hooper & Boyd (1983) solved 
the stability problem exactly for unbounded Couette flow. The equation from which 
the growth rate follows is evaluated numerically. This equation is also studied in 
several asymptotic regimes, one of which (infinite viscosity ratio) yields the same 
result as the short-wavelength limit of the result of the analysis in this paper. 

Renardy (1985) notes that the asymptotic analyses for ‘long’ waves (e.g. Yih 1967) 
and ‘short’ waves (Hooper & Boyd 1983) for Couette flow between two plates may 
miss unstable situations : waves with ‘intermediate ’ wavelengths may have positive 
growth rates. She also notes, as Hooper & Boyd (1983) did for ‘short ’ waves, that, 
for certain values of the parameters (e.g. viscosity ratio, surface tension, Reynolds 
number), the effects of an unstable density stratification (at the top of the cross- 
section of a pipe, for instance) can be compensated by viscosity stratification and 
surface tension, if the layer with the lower viscosity is thin enough. Hooper & Boyd 
(1987) present a two-dimensional analysis of the interfacial stability of Couette flow 
of two fluids of different viscosity, with respect to perturbations with ‘intermediate ’ 
wavelengths. They show that the interface of a fluid that is bounded by a wall and 
an infinite fluid can be unstable to these perturbations if the bounded fluid is the less 
viscous one (lubricating flow). We shall return to their results later. 

Yiantsios & Higgins (1988) studied numerically the interfacial stability of two 
fluids in plane two-dimensional Poiseuille flow, including density differences and 
interfacial tension, for a variety of physical parameters. Preziosi, Chen & Joseph 
(1989) studied numerically the stability of the interface in CAP in a cylinder 
geometry with the core fluid as the more viscous one, and they include surface 
tension and non-axisymmetric disturbances. The parameter values they use apply to 
experiments by Charles, Govier & Hodgson (1961), in particular the viscosity ratio 
of the two fluids, which is approximately 19. It is found that the axisymmetric 
disturbances are always the more unstable ones. Attention is paid to an instability 
of the interface and of the entire flow that cannot be studied in a plane geometry, and 
which is due to surface tension. As discussed in the introduction of the paper 
Papageorgiou et al. (1990) this instability can easily be understood in energetic 
terms : for axisymmetric disturbances with wavelengths larger than the circum- 
ference of the interface, the interfacial energy (area times interfacial tension) 
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decreases as the amplitude of the disturbance increases. Thus, while the axial 
component of the interfacial tension always acts to stabilize disturbances (with small 
wavelengths damped the most), the circumferential component can destabilize the 
interface. This capillary instability of the interface can be stabilized by the viscosity 
difference between the two fluids if the Reynolds number is large enough. In practice, 
this leads to a minimum velocity of the oil below which CAF is not stable. 

Concerning the development of nonlinear theory for interfacial waves, Hooper & 
Grimshaw (1985)’ for Couette flow, and Shlang et al. (1985), for Poiseuille flow, 
extend the analysis of Yih (1967) for ‘long’ waves to include (weakly) nonlinear 
effects. They show that the evolution of the interface is governed by the 
Kuramoto-Sivashinsky equation, and that nonlinear effects, as well as surface 
tension, do indeed stabilize interface disturbances and can result in finite-amplitude 
steady states. On the other hand, quasi-periodic and chaotic solutions of this 
equation exist too. Hooper (1985) derives a weakly nonlinear evolution equation for 
interfacial waves if one of the fluid layers is very thin, but solutions of this equation 
are not given. In a recent study Papageorgiou et al. (1990) extended the weakly 
nonlinear theory by adopting an approach used by Frenkel et al. (1987) in their study 
of the nonlinear saturation of the capillary instability of CAE” in the absence of 
viscosity differences. Papageorgiou et al. (1990) studied the stability of the interface 
of CAP in a cylindrical geometry in the limit of small film thickness including the 
dynamics of the core and surface tension. This leads to a modified Kuramoto- 
Sivashinsky equation having regular, nonlinear, travelling wave solutions for a 
large part of the parameter space. Their nonlinear expansion breaks down if the 
viscosity ratio of the fluids is larger than the ratio of the core radius and the thickness 
of the annulus. 

The parameter values (a = 0 ( 1 ) ,  R % 1 )  that apply to the experiments presented 
in this paper, and the geometry of a thin layer of less viscous fluid bounded by a wall 
and the interface with a very thick layer of more viscous fluid, seem to point to an 
interfacial instability as explained by Hooper & Boyd (1987) in a study of the 
‘intermediate ’ wavelength instability in a similar geometry. However, as Hooper & 
Boyd already note, and as is evident from the equations with which they start their 
analysis, their asymptotic results, obtained for (aR)i 9 1 and a/(&); 4 1, are valid 
only for moderate m (the ratio of the viscosities of oil and water). We checked this 
numerically and found that, for the parameters of interest with respect to the 
experiments presented here, the analysis of Hooper & Boyd (1987) is valid if m is 
smaller than, 3, say, with& > lo3. Hooper & Boyd (1987) alsogave adispersionrelation 
that is valid for all parameters values. However, this equation is quite complicated, 
requires numerical solutions, and does not give us insight into how the growth rate 
depends on the parameters in the model. Therefore we present here ($3) an 
asymptotic analysis of the stability of the interface of planar Couette flow, taking 
into account that m % 1.  A similar analysis was done (independently) by Hu, 
Lundgren & Joseph (1990), who address the stability of the interface in CAF with a 
very viscous core, for axisymmetric disturbances, and neglecting surface tension. 
The first case they consider is for interfacial waves with phase speeds that are clearly 
smaller than the speed of the oil core. Small growth rates are found for these modes. 
Their second case, for interfacial waves with phase speeds close to  the speed of the 
oil core, is equivalent to the analysis presented here, if surface tension is neglected 
in our analysis, and using the fact that we consider a thin annulus. As a check on the 
accuracy of the asymptotic results, the linear stability problem is also solved 
numerically, using truncated expansions in terms of Chebyshev polynomials, and 
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solving the eigenvalue problem for the growth rate of the disturbances. Finally ($4), 
the results of the analysis and the experiments are compared. 

2. Experiments 
The experiments were carried out in a test loop, of 2 in. diameter, and 16 m long, 

and also in a second test loop, of 8 in. diameter, and lo00 m long. A diagram of these 
(similar) loops is given in figure 2. The oil is stored on top of a water layer in a tank. 
The temperature of the oil can be changed so that the viscosity of the oil can be 
varied. From the tank the oil is pumped to the inlet device, where the water layer 
is introduced around the oil core. Sometimes a solution of sodium silicate in water is 
added to the water (to a concentration of 0.2%) to make the pipe wall more 
hydrophilic and thus prevent fouling of the pipe wall by oil. The flow passes the test 
section in the CAF mode, a separator where most of the water is removed, and then 
returns to the tank. There, the oil and the remaining water will separate again as a 
result of their different densities. The 2 in. (8 in.) diameter test loop contains two 
(four) straight parts, each 6 m (250 m) long. The instrument section, provided with 
five ultrasonic transducers that measure the profile of the interface, was mounted 
3 m (500 m) downstream of the inlet device. The transducers were distributed over 
half the pipe circumference at equal spacings of 45' in the same cross-sectional plane. 
In this paper only the data from the topmost transducer are used in comparisons 
with the theoretical predictions. The measuring technique is based upon ultrasonic 
reflection : a sound wave travelling through the water film is partially reflected at the 
oil/water interface. By recording the time between transmission and arrival of the 
reflected signal, and using the known speed of sound in water, the thickness of the 
water layer can be determined. The ultrasonic transducers used in the experiments 
operate both as transmitters and, a few microseconds later, as receivers. After each 
measurement (sample frequency 3052/s) the computer reads the counter, converts 
time into distance and stores the resulting value in its memory. 

The resolution of the measuring system for determining the water layer thickness 
is 0.1 mm. Oil and gas bubbles and small particles in the water layer can cause early 
reflections, while on the other hand no echoes will be received from steeply sloping 
interfaces. Special algorithms for detecting these effects and restoring the signal were 
implemented. Accuracy in the measurement of the shape of the interface is mainly 
restricted by the fact that the ultrasonic beam is emitted from a transmitter which 
is a surface source with a diameter of 5mm. For this reason, the lower limit for 
wavelengths that can be detected is 5mm, where wavelength is defined as the 
distance between two successive wave tops. Accuracy of information about the exact 
shape of the surface will decrease aa disturbances have smaller lengths. After a given 
data sampling period the data, containing values of the thickness of the water layer, 
are scanned for successive maximum values. The time between maxima is converted 
into distance using the speed of the oil core. This speed can be calculated from the 
amount of oil that is pumped into the pipe and the measured water hold-up. This is 
correct, as the velocity in the very viscous oil core is (almost) constant. Besides, the 
velocity of the disturbances on the interface was measured to be almost equal to 
the core velocity. Finally, the distances between the successive maxima give us the 
distribution of wavelengths that are present in the disturbance of the interface and 
which we will use to compare theoretical predictions with. The correctness and detail 
of the data were confirmed by bench-scale tests, using rigid wave profiles of known 
dimension and shape. 
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0.2 YO Sodium silicate 

FIGURE 2. The core-annular flow test loop. 

2 in. 

Oil type fuel 

Oil viscosity (Pa s )  3.9-25 
Oil temperature (C") 32-17 

Oil density (kg/ms) 957-971 
Water temperature ("C) 10 

Water density (kg/ms) 1000 
Water viscosity ( Pa s) 1.3 

TABLE 1 .  Experimental conditions 

8 in. 

crude 
42-30 

7-27 
978-992 

25-20 
0.9-1.0 

998 

Experimental conditions are given in table 1. The superficial oil velocity (this is the 
velocity that the oil would have if no water were added) was varied between 0.5 and 
2 m/s. For superficial oil velocities lower than 0.25 m/s (0.15 m/s) for the 2 in. (8 in.) 
pipe, the core tended to float against the upper part of the pipe, so that we did not 
observe the capillary, low-Reynolds-number, instability discussed by Preziosi et al. 
(1989). The input water fraction ranged between 0.04 and 0.14. A characteristic value 
for the oil/water interfacial tension is between 0.02 and 0.05 N/m. 

The above figures give a variation between 3000 and 30000 for the ratio of the 
viscosities of oil and water. The ratio of the radius of the oil core and the thickness 
of the water layer was measured to vary between 10 and 50. The Reynolds number, 
based on the thickness of the water layer, the kinematic viscosity of water, and the 
velocity of the water at the interface had a minimum of, say, 250, and a maximum 
of about 10000. 

The pressure gradient was typically twice the pressure gradient for the equivalent 
flow rate of only water. For the 2in. pipe its value varied between 100 and 
2000 Pa/m, and for the 8 in. pipeline between 25 and 250 Pa/m. The oil core is in 
general oval in shape and more or less concentrically located in the pipe. The 
minimum water layer thickness occurs at  the sides of the pipe. The amplitudes of the 
waves on the interface are less than half the average water layer thickness. The speed 
of the waves was determined by cross-correlating the signals of two transducers 
mounted at the top of the pipe a t  an axial distance of 100 mm. It was found to be 
equal to the speed of the oil core, within the experimental error of about 10%. This 
is also the error in the measured wavelength. The dimensionless wavenumber 
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a(:= (2nlh)d)  of the interfacial waves (where h is the wavelength and d is the 
thickness of the water layer) was between about 0.2 and 2 for most runs. The 
maximum of the wavelength distribution occurred at approximately 0.4. A more 
detailed account of the data on the observed wavelengths is given in $4, where a 
comparison with the predictions of the model that is presented in the next section is 
made. The water hold-up, that is the volume fraction of water present in the pipe, 
was found to be greater than the input water fraction by a factor of 1.0-1.3. This 
means that the average velocity of the water layer is smaller than the velocity of the 
core, but not by the factor of 2 that would be found for a linear velocity profile 
between a flat interface and the wall. This is due to the finite amplitudes of the waves, 
disturbing the basic flow, and probably an important cause of disagreement between 
theory and experiment. 

3. Analysis 

3.1. The model 
As the basic flow we use two-fluid Poiseuille flow. The two fluids, separated by a 
cylindrical interface, are located concentrically (Oliemans 1986). This basic flow is a 
solution of the Navier-Stokes equations if gravity is neglected (' density-matched 
flow '). If the annulus is much thinner than the core, and the fluid in the core is much 
more viscous, the velocity of the fluid in the annulus varies linearly between the wall 
and the interface, while the velocity of the fluid in the core is constant. This can be 
shown as follows. The solution for the basic flow of the Navier-Stokes equations in 
a cylindrical geometry is given by equation (4.2) of Preziosi et al. (1989). The ratio 
of the inner radius of the pipe R, and the radius at which the interface of the two 
fluids is located R, is given by a = R,/R, = 1 + n-l, where n B 1 is the dimensionless 
core radius RJd. The distance to the centre of the pipe divided by R, is r ,  and the 
ratio of the viscosity of the fluid in the core (oil) and the fluid in the annulus (water) 
is given by m (note that Preziosi et al. define m the other way round). If the velocity 
profile in the pipe is normalized with the centreline velocity it is found that the basic 
flow is given by 

I i -r2/[m(a2- 1) + 13, O < r < l ,  
Ulr) =I 

If we define the distance to the interface as z :  = r - 1, and use a = 1 + n-l, m B n B 1, 
it is found that 

U(z)  % l - n z ( l + ~ z ) + O  -,- (: :), 0 < z < n-l, 

with U ( z )  x 1 for the core. Or, because z < n-l 4 1, 

U(z)  x l-nz, 0 < z < n-l. (3) 

If we only consider axisymmetric disturbances of the cylindrical interface, because 
the paper by Preziosi et al. (1989) strongly suggests that these will always be the most 
unstable ones, the above shows that the most important instability of the interface 
can be described in a two-dimensional geometry. This leads to the simple geometry 
of two-dimensional Couette flow of two fluids of different viscosity, with the less 
viscous fluid bounded by a wall and the other fluid unbounded (or in a much thicker 



104 R.  Miesen, G. Beijnon, P .  E .  M .  Duijvestijn, R.  V.  A .  Oliemuns and T. Verheggen 

layer than the first fluid; see figure 3). What we should note is that the possibility of 
capillary instability is ruled out by this choice. But as already noted in $2, this low- 
Reynolds-number instability was not observed. 

In the following we will use a coordinate system that moves with the velocity of 
the fluids a t  the interface. The equations of motion, i.e. the Navier-Stokes equations, 
are non-dimensionalized with respect to d ,  the distance from the interface to the wall, 
and U, the velocity of the interface (and also of the whole core). This introduces the 
dimensionless coordinates x, y, the basic flow depicted in figure 3, and the following 
dimensionless parameters (see, for example, $3 of Yih 1967) : 

\ R = p1 Ud/p l ,  the Reynolds number of the annulus, 

I m = ,u2/,u1, the viscosity ratio 

r = p2/p1, the density ratio, 

S = T / ( p l d U 2 ) ,  the dimensionless surface tension parameter, 
(4) 

i and 

where pi and pt are the density and the (dynamic) viscosity of fluid i, T is the surface 
tension, and g is the magnitude of the gravitational acceleration. As was done by Yih 
(1967), the Navier-Stokes equations, in stream function formulation, are linearized 
in the disturbance of the basic flow. We assume the disturbances to have an x- and 
t-dependence of the form exp[ia(x - c t ) ] ,  where c is the dimensionless phase velocity 
of the disturbance in the x-direction. This velocity has to be determined in the course 
of the analysis. The growth rate of the disturbance is given by Im(ac). 

Then the y-dependent parts of the stream functions, q5i(y), satisfy the well-known 
OrrSommerfeld equations (Orr 1907 ; Sommerfeld 1908) : 

F = V / [ ( l - r ) g d ] ,  the Froude number, 

The no-penetration and the no-slip conditions at the boundary at y = - 1 give 

where the prime denotes the derivative with respect to y. If the fluid is assumed to be 
unbounded, the solution has to be bounded as y +a. 

The conditions at the interface are the continuity of the velocity components and 
the balance of the stress components. Yih (1967) shows that these can be formulated 
as (see also Hooper & Boyd 1987) 

(9) $1 = $2 = $ ( O ) ,  
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Ub) = 0 

FIQURE 3. The configuration of the flow and the velocity profile V(y). The less viscous fluid 
1 (water) is bounded by the wall and fluid 2 (oil). 

U 

0.03 0.04 0.05 
- 0.0005 .. 
-O.0010-~ (4 

-0.0015.. 

-0.0020-- 

-nnnx+ 

Im (ac) 

-0.0030 1 \\\\,, \ 
-0.0035 

-0.0040 

0.005 O.O1OI Fi 
Im 

FIQURE 4. The growth rate Im(ac) of interfacial waves as a function of the dimensionless 
wavenumbera,form = 104.R = 2500,s = 0.02,r = 0.97,F = 7 . 5 ~  10-4,andaratioofthecoreradius 
to water layer thickness n = 40. In  (a) the asymptotic result (13) for small a is shown (dashed line). 
In  (b) the growth rate if surface tension is neglected is also shown, i.e. S = 0 (upper curve). 
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where we have used the equation for the continuity of the tangential velocity (10) to 
simplify the balance of the normal stress (12). Equations (5) and (6) will now be 
solved asymptotically, subject to the boundary and interface conditions (7)-( 12). 
This gives the phase speed c and thus the growth rate Im(ac). Furthermore, the 
asymptotic solution is checked numerically. 

3.2. Numerical solution 
Equations (5)-( 12) are solved numerically by reducing them to an algebraic complex- 
valued generalized matrix eigenvalue problem, by using truncated expansions of the 
eigenfunctions in terms of Chebyshev polynomials (Orszag 197 l),  with eigenvalues c. 
We are then interested in the most unstable mode, corresponding to the eigenvalue 
for which the growth rate Im(ac) is maximal. Since not all the boundary and 
interface conditions contain the eigenvalue c ,  infinite eigenvalues will arise. During 
the actual computation these infinite eigenvalues might interfere with the large but 
finite ones (Goussis & Pearlstein 1989). To remedy this the coefficients of the (two) 
highest-order Chebyshev polynomials are eliminated, giving rise to a slightly denser 
and smaller system that does not have the infinite eigenvalues. 

For a given number of Chebyshev polynomials in the expansion all (complex) 
eigenvalues are computed, using the QZ algorithm as implemented in the Numerical 
Algorithm Group (NAG) library (Moler & Stewart 1973). The relevant matrices are 
balanced prior to the actual calculations (Osborne 1960). The main interest lies in the 
eigenvalue with the largest imaginary part. 

The correctness of the numerical results was checked in several ways: the 
(numerical) results of Renardy (1985) were reproduced, as were the asymptotic 
results of Yih (1967) and Hooper &, Boyd (1987). This could be done using 40 or less 
Chebyshev polynomials. A calculation of the growth rate of interfacial waves for 
characteristic values of the parameters m, R, and S is shown in figure 4.  Also shown 
in figure 4 is the ‘long’ wavelength asymptotic result of Yih (1967), which for 
m % n2 % 1 reduces to 

n3(m2 - 4mn3 - 8ns) 
15(m+ 4n3)3 

I m  (ac)  x a* R .  

Note that this means that the interface of the flow considered is stable to long- 
wavelength perturbations as long as m < 2( 1 + 2/3)n3 or n > 0.57mi, a condition 
satisfied for most experiments. This means that no long waves (waves with 
wavelengths larger than 2 d d )  will be observed if the thickness of the annulus is 
small enough. 

The result in figure 4 was found to be almost independent of n,r, and F ,  indicating 
that the influence of the finite thickness of the second layer and of gravity are only 
minor. The high-wavenumber cutoff disappears if surface tension is neglected (see 
figure 4). Variations of the other parameters (within the limits relevant to the 
experiments) generally gives the same picture : stability of ‘ long ’ as well as ‘short ’ 
waves (01 % l) ,  and a band of unstable wavenumbers, say 0.1 < a < 2, in between. 

3.3. Asymptotic solution 
We will now solve asymptotically the problem posed in 53.1 : the Orr-Sommerfeld 
equations for the fluid in the annulus ( 5 )  and the fluid in the core (6), with boundary 
conditions (7), (8) and interfacial conditions (9)-( 12). First some observations that 
are important for the analysis are repeated here. The waves in experiments satisfy 
a = 0 ( 1 )  and R = 0(103), so & % 1. The phase velocity of the waves c ,  in the frame 
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moving at the interfacial velocity of the fluids, is small. The ratio of the densities of 
the fluids r x 1. Finally, the ratio of the viscosities m 2 O(&) % 1. 

3.3.1. The stream function of the core 
First, the Orr-Sommerfeld equation (6) for the stream function related to the 

disturbance of the basic flow in the core, is solved. This can be done in terms of 
integrals of Airy functions (Hooper & Boyd 1987), but simpler solutions, leading to 
much simpler results, can be obtained by asymptotic approximation. Because 
&c/m 6 1, the right-hand side of (6) can be neglected with an error O(&c/m). This 
means that the flow is dominated by its viscosity, i.e. it is Stokes flow: 

with the solution 
+&/) = (a, y +a,) e-OY + (a, y + ad)  ea”. 

The constants a, to u4 are determined by the boundary and the interfacial conditions. 
Using boundary conditions similar to ( 7 )  and (8) ,  a,, a4 can be expressed in terms of 
a,,a, and it can be shown that the core can be approximated by an infinite layer if 
2an S 1, where n is the dimensionless thickness of the more viscous layer, i.e. the 
dimensionless core radius. Assuming that 2an B 1 ,  or equivalently that the fluid is 
infinite and the solution +&) is bounded, gives 

(16) A ( Y )  = (a,y +a,) e-OrY- 

3.3.2. The stream function of the annulus 
The solution of equation ( 5 )  for the stream function in the annulus is obtained by 

matched asymptotic expansions. Note that (5 ) ,  like (6), can also be solved exactly; 
however, these exact solutions are complicated to handle. 

From ( 5 )  it is clear, because & % 1, that the left-hand side of that equation can 
be neglected correct to O(ccR)-’. The terms on the left-hand side of the equation 
represent the viscous terms in the Navier-Stokes equations. So, in contrast to the 
disturbance in the core, the disturbance in the annulus appears to be dominated by 
the ‘ connective ’ terms of the Navier-Stokes equations. However, this approximation 
is only justified if the derivatives with respect to y occurring in ( 5 )  are not too large. 
This is correct outside the (viscous) boundary layers at the wall and at the interface. 
In  the boundary layers a different approximation is used, in which the fourth-order 
derivative is balanced by the largest (non-viscous) term on the right-hand side of the 
Orr-Sommerfeld equation. The solution of that equation is then matched to the 
solution in the main part of the fluid. 

Another complication is associated with the position of the critical layer, at 
y - c  = 0, where the phase velocity of the disturbance becomes equal to the velocity 
of the basic flow. If the critical layer is outside the boundary layers, it can be shown 
(see, for example, Drazin & Reid 1981) that the solution has the same form inside the 
critical layer as outside it if the basic velocity profile has zero curvature, as in our 
problem. However, if the critical layer is inside a boundary layer, the standard way 
of dealing with a viscous boundary layer becomes invalid. Because it was observed 
in the experiments that the phase speed of the waves is almost equal to the velocity 
of the core and the velocity of the fluid of the annulus at the interface, we indeed 
expect the critical layer to  be in the boundary layer at the interface. For the 



108 R.  Miesen, G .  Beijnon, P .  E .  M.  Duijvestijn, R.  V.  A .  Oliemans and T .  Verheggen 

boundary layer at  the interface we will therefore use a different scaling than the one 
that is used for the boundary layer at the wall. 

Outside the boundary layers the Orr-Sommerfeld equation (5) can be 
approximated (a % 1) by 

with the outer #y(y) solution given by 

q5y(y) = b, cay + b, e-ay. (18) 

To determine a solution $y(y) near the wall y = - 1,  the coordinate y is scaled so 
that the fourth-order derivative is of the same magnitude as the right-hand side 
(non-viscous terms) of (5 ) .  This equation is then solved, correct to the lowest order 
in the scaling parameter, and matched with the outer solution (18). Following 
Hooper & Boyd (1987, equations (3.4) to (3.11)) we find: 

} (19) 
E W  a € a  

&"(y) = d, sinh[a(y+l)]--cosh[a(y+ l)]+zeO'(Y+l)/ew , 

&(y) = d l { s i n h [ a ( y + l ) ] - ~ c o s h [ a ( ~ ) + l ) ] }  P 

{ P P 

x d, sinh [a (y  + l)], (20 1 
where ew = (ccR)-i < 1 and p = exp (-:in). 

Because we observed that waves have almost the same velocity as the fluids at  the 
interface, we assume that c 4 1 (c is the phase velocity in the frame moving a t  the 
interfacial speed). Therefore, in the boundary layer near the interface, Iy-cl 4 1, in 
contrast to Iy-cl x 1 in the boundary layer near the wall, and a different scaling 
from the one near the wall is needed near the interface in order to balance the fourth- 
order derivative with the leading terms on the right-hand side of (5): 

z = y/c  (21) 

E = (aR)-i* (22 1 

where a suitable choice of E is found to be 

The leading-order terms of (5) then give 

where &(z )  is the solution for dl near the interface. The scaling (22) is chosen in such 
a way that both z and C / E  are 0 ( 1 ) ,  and this should be checked a posteriori (see (36)). 
Equation (23) can be solved in terms of Airy functions: 

(25) wl(z) = el Ai [e5i"/6(z-~/e)] +fi Aiei"'6(z-~/~)], 

where e l ,  fl are constants. From this, (24) can be solved for q5: by integrating 
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twice. If 4; is matched with 4; we find that $!, and therefore wl(z), should be finite 
as z+- 00. This gives fi = 0. Solving for @, then gives 

&(z) = d i s  w,(g)dZ+e,z+e,, 
-m -m 

where e2,e9 are constants. The lower boundaries of the integrals have been chosen 
such that matching is simple. Matching the solution near the interface (26) with the 
outer solution (20) is done by taking IyI Q 1, i.e. Iez:zI 4 1, and Iy/sl $ 1, i.e. llzll $ 1. 
This gives 

(27) 

e2 = 0, (28) 

e3 = d, sinh (a), 

which, together with (25) and (26), yields 

&(y) = ( a R ) : e , S  -m d g r  -m Ai[e5i'/6(aR)i(~-c)]d~+dlsinh(a). (29) 

3.3.3. The interfacial conditions 
In the foregoing subsections we have determined the solutions of the Orr- 

Sommerfeld equations for the stream functions of the flow in the core ($3.3.1) and 
the annulus ($3.3.2). These solutions should satisfy the conditions for continuity of 
velocity and stress at the interface given by (9)-(12). These (four) interfacial 
conditions fix the four constants a,, a2, d,, e l ,  occurring in the solutions for the stream 
functions (16), (19), (20), and (29), up to a common constant, and they determine the 
value of the phase speed c. 

From the continuity of the normal velocity at  the interface (9) and the stream 
functions on both sides of the interface (16) and (29) we find 

a2 = d,sinh (a) + (&)$el d g r  Ai [esi"16(aR)i(y"-c)]dy". (30) 
-m -m 

From (10) (continuity of the tangential velocity) the leading terms, i.e. the term of 
O(ccR)i on the left-hand side and the term proportional to c-' = O(aR)i on the right- 
hand side, give 

where 

a2 
el =-- cJ(&))' 

J = Ai [eSi"l6(aR)'(Q-c)] dg. 

The tangential stress conditions (11) gives, using m 2 O(&)g, 

a, = aa,. (33) 

Finally, we consider the equation resulting from the balance of the normal stress. The 
leading terms are O(m) and O(aR)i:  

(aR)ie,Ai' = (2m+icc~s /c )  a2a2, (34) 

where we have used F1 4 a2S, and assumed that, &S/c < O(m) or S < O[m(aR)-f]. 
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FIQURE 5.  The growth rate as a function of the wavenumber for R = 2500, S = 0.02, m = lo4. The 
solid line is part of the curve depicted in figure 4. The dashed line is calculated from (36), together 
with (37) and (38). This calculation was done using only the function 'Solve' of the Mathematics 
software package. The dashed-dotted line is for zero surface tension (S = 0). The dotted line is 
given by the asymptotic expression (39). Also shown are the wavenumbers a, numbers and g, a t  
which the growth rate is zero. 

3.3.4. The results of the analysis 
Combining (31) and (34) finally gives 

1 
2m 

ccc = --[iaRX+Ai'/(cr2 J ) ] ,  

where Ai' and J are given by (35) and (32), respectively. This equation also shows 
that c is indeed O(ccR)-i. From this expression the growth rate can be calculated. 
Furthermore, the stream functions in both the annulus and the core, that is (16), 
(19), (20), and (29), are now given by (36), together with (30), (31), and (33). As we 
can see from (36), the growth rate is roughly inversely proportional to the ratio of the 
viscosities : the more viscous the core or the less viscous the annulus, the more slowly 
disturbances will grow. It can further be seen that the surface tension contributes 
negatively to the growth rate and is more important for shorter waves (larger a). 

The problem in calculating the growth rate Im(ac) from (36) is that J and Ai' 
depend on c ,  so that the growth rate is in fact only implicitly given by (36). This 
problem can be solved by approximating both J and Ai' by the first terms of their 
Taylor expansions round c = 0 :  

Ai [e5i'"'6((CLR)$j] dg-cAi (0) 
J Z L  

= i(CLR)-fein/6 -0.3550c, (37) 

= (&)fe-W6 [0.2588-0.1775(aR)~e-'n'3c2]l, (38) 

Ai' x (aR)fe5in/6[Ai'(0) +Ai"(O) (aR)Se-i"/6c+~Ai"'(0) (~yR):e-'~/~ c2] 

where one has to be careful with the definition of the domain of the Airy functions 
and thus with the value (and sign) of Ai(O), Ai'(O), Ai"(O), and Ai'"(0). Using these 
two approximations (36) is just a (complex) quadratic equation in c, from which the 
growth rate can be calculated very easily, using a standard software package such as, 
for example, Mathematica. The agreement between this approximation and the 
numerical solution of $3.1 is quite good (figure 5 ) ,  and becomes better if higher-order 
terms in (37), (38) are taken into account. Also shown in figure 5 is the result if 
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FIQURE 6. The stream functions for LY = 1, a, = I ,  and R = 2500, S = 0.02, m = 10'. Note that the 
part of stream function that is valid near the wall (y = - 1) can be distinguished from the outer 
solution only very near the wall. This should be expected because the thickness of the boundary 
layer near the wall is of order (aft)-$ = 0.02. The stream function near the interface, however, differs 
substantially from tpe outer solution. It is valid in the boundary layer near the interface which is 
approximately (&)-s 0.1 thick. These functions have been calculated using (l6), (19), (20), (29), 
(30), (31), (33), (36), (37), and (38). The values obtained, and used, for c and J were 
c = (-3.901+3.2853) J =  (2.265+l.l1li) 

surface tension is neglected (S = 0). As expected, in that case the growth rate is 
positive for large wavenumbers, and there is no cutoff. As an example, in figure 6 the 
stream function is given for the same parameters used in figure 5. 

For larger wavenumbers only the f i s t  term in (37) and (38) seems to be important 
(see also Hooper & Boyd 1983), so that the growth rate is given by (see also figure 
51 : 

(39) 
1 

2m 
Im (ac) = - [ - aRS + 0.6724(R/a2)1]. 

Thus an approximation for the maximum wavenumber with a positive growth rate, 
i.e. the ' high-wavenumber cutoff' ah, can be found to be (figure 5, figure 7) 

ah = 0.844(RS8)-$. (40 1 
A more rigorous way to obtain this expression is given in the Appendix. Note that 
(in this approximation) it is independent of the ratio of the viscosities m of the two 
fluids and only weakly dependent on the Reynolds number. It should be noted that 
a better approximation can be obtained from (36). 

For smaller wavenumbers surface tension will be less important. Neglecting 
surface tension, and using (36) together with (37) and (38), the lower wavenumber at 
where the growth rate is zero (figure 5,  figure 7)  can be approximated by 

a1 = 0.409(B/m)i. (41) 

As is shown in the Appendix, this approximation is correct if S < O(mi /H) ,  SO that 
it is better for smaller 8, larger m, and smaller R. The Appendix also shows that the 
curve of neutral stability is determined not by the four independent parameters a, 
R, m, S, but by the two parameters ma2/R; cf. (41); and a2(aR)'S; cf. (40). The curve 
of neutral stability in that parameter space is shown in figure 8. 
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FIGURE 7. Lines of neutral stability (zero growth rate) in an (a,R) plot. The solid lines are 
calculated using the (A 6) in the Appendix, which was derived from (36), (37), and (38). The dashed 
lines are the approximations (m = lo4, S = 0.02) given by (40) and (41), respectively. The dots are 
determined numerically for m = lo4, S = 0.02, r = 0.97, F = 7.5 x 

Stable 

f Unstable 

I i 2 3 4 5 
m a 2 / R  

FIGURE 8. The curve of neutral stability calculated from (A 6) in the Appendix. The z-axis is the 
parameter mae/R, the y-axis the parameter a2(uR)iS. The values of these two parameters 
determine whether a disturbance with wavelength 01 grows. 

At the end of this section we note that (36) looks very much like (28) of Hooper 
& Boyd (1983), although it is used in a different context and other approximations 
have been used. This is rather surprising because Hooper & Boyd considered a 
geometry of two infinite fluids, while we considered only one infinite fluid, the other 
being finite. This means that the instability is determined predominantly by the 
viscous boundary layer near the interface. The influence of the wall and the 
boundary layer near it seems to be negligible. 

4. Discussion and conclusions 
The theory presented in the previous section agrees quantitatively very well with 

the general results of the experiments given in $2. For lubricating CAF with a thin 
annulus, a very large viscosity ratio of the fluids, a large Reynolds number for the 
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FIQURE 9. Calculated growth rate and measured wavelength distribution for a characteristic 
experiment in an 8in. pipe. The dots represent the measured wavelength distribution for an 
experiment in an 8 in. pipe, with a viscous crude oil (viscosity z 10 Pa a) as the fluid in the core and 
water (viscosity z 9.5 x lC4) aa the lubricating fluid in the annulus. The relevant quantities are the 
mean water layer thickness d = 4.3 mm and core velocity U = 0.58 m s-l, giving a Reynolds 
number R = 2600. The surface tension was 0.02 N m-l, giving a surface tension parameter 
S = 0.014. The solid line is the (positive part of the) growth rate, for m = lo4, R = 2600, S = 0.014. 
The wavenumbers a, and ah are the minimum and maximum wavenumbers for which the growth 
rate is positive, respectively. 

fluid in the annulus, and wave speeds close to the speed of the core, the theory 
correctly predicts that waves will exist with wavelengths of approximately 1-10 
times the thickness of the annulus. The band of wavelengths will be broader for larger 
viscosity ratios, and smaller Reynolds number or surface tension. In this section we 
will make a quantitative comparison between the experiments and the theory and 
provide an explanation for the discrepancies. We will use mainly the results from the 
2 in. pipe, because more data are available there. 

One data set for the 8 in. pipe is given in figure 9, covering that part of the growth 
rate vs. wavenumber curve for which the growth rate is positive. The idea that the 
measured wavelength distribution is in some way proportional to the growth rate can 
only be defended with ‘hand-waving ’ arguments, and as kind of extension of the idea 
in hydrodynamics that the mode with the largest growth rate will be the dominant 
one. Thus, assume that the wavelength distribution has its maximum at the 
wavenumber where the growth rate is maximal, and assume that waves corre- 
sponding to wavenumbers with negative growth rates will not be observed. It then 
seems reasonable to compare the curve for the growth rate as a function of the 
wavenumber and the wavelength distribution. For the experiment depicted in 
figure 9 we see a very good agreement between the smallest wavenumber observed, 
and the smallest wavenumber with a positive rate a,, as predicted by the theory. 
The largest observed wavenumber ah and the wavenumber at which the experimental 
wavelength distribution has its maximum are, however, considerably larger than 
predicted by the theory (about a factor of 2). This may be explained only partly by 
a surface tension that is reduced, e.g. by fouling, so that the high-wavenumber cutoff 
becomes larger. Another explanation concerns nonlinear effects, which we have 
neglected. These effects will be important because the amplitudes of the observed 
waves are large. Examples are the disturbance of the (linear) basic flow, and the 
generation of higher harmonics by nonlinear interaction. We also should not forget 
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FIGURE 10. Calculated growth rate and measured wavelength distribution for a characteristic 
experiment in a 2 in. pipe. The dots represent the measured wavelength distribution for an 
experiment in a 2 in pipe, with a viscous fuel oil (viscosity x 21 Pa s) as the fluid in the core and 
water (viscosity % 1.3 x Pa s )  as the lubricating fluid in the annulus. The mean water layer 
thickness d = 1.4 mm and the core velocity U = 1.1 m s-l, giving a Reynolds number Re = 1200. 
The surface tension was 0.04 Nm-', giving a surface tension parameter S = 0.024. The solid line is 
the (positive part of the) growth rate, for m = 1.6 x lo4, R = 1200, 8 = 0.024. 

that experimental errors in the wavenumber, the Reynolds number, and the surface 
tension parameter may be of the order of 10-20 YO. This error is mainly caused by the 
uncertainty in the measured core speed, which is used to calculate the quantities 
mentioned above. Important parameter values for this experiment are : core/annulus 
thickness ratio x 25, viscosity ratio lo4, Reynolds number 2600, and surface tension 
parameter X = 0.014, so that the assumptions made in the analysis are indeed 
correct. 

A typical dimensionless growth rate for these experiments is 0.01. With a velocity 
of 1 ms-' and an annulus thickness of 4 mm this gives a dimensional growth rate of 
2.5 s-', which means that the amplitude of a disturbance grows by a factor e in of 
a second. This implies that  waves will form almost instantaneously on the surface of 
the core, which is necessary in order for the flow not to break down due to the core 
touching the upper pipe wall (Oliemans &, Ooms 1986). 

Figure 10 shows equivalent data for the 2 in. pipe. I n  this example we see a less 
good agreement between the smallest wavenumber observed and al, but a very good 
agreement between the largest wavenumber observed and ah (although it should be 
noted that the wavelength corresponding to the data point a t  a x 1.7 is quite close 
to the lower limit of our measuring system. The other points are not, however, and 
the cutoff was also observed in experiments where it was less close to  this limit.) The 
wavenumber at which the experimental wavelength distribution has its maximum 
corresponds well to the wavenumber for which the calculated growth rate is 
maximal. This is the case in most of the experiments in the 2 in. pipe. 

From the large number of other experiments that were done, only a few 
representative data are presented here. The shape of the measured wavenumber 
distribution in general looks like the one in figure 10, with the location of the 
maximum of the wavelength distribution approximately coinciding with the location 
of the maximum growth rate. We therefore concentrate on the smallest and the 
largest wavenumbers, and compare these with the theoretical predictions. As can be 
seen from table 2, the smallest and largest observed wavenumbers for the experiments 
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a1 ah 

m R S Theory Experiment Theory Experiment 

3 600 720 0.075 0.19 0.21 0.97 1.48 
3 600 1530 0.018 0.27 0.23 1.62 1.56 
4 000 2930 0.0049 0.35 0.18 2.62 1.59 

17 700 310 0.17 0.061 0.13 0.76 0.72 
16200 1670 0.017 0.13 0.17 1.68 1.41 
16200 3200 0.0060 0.18 0.24 2.38 2.32 

TABLE 2. Six representative experiments in the 2 in. pipe, with theoretical and experimental 
values for low- and high-wavenumber cutoffs for positive growth rates. 

with the smaller viscosity ratio seem to be more or less independent of the parameters 
R and S, contradicting the theory. This is not caused by the approximations made 
in the analysis, because comparison with numerical results shows very good 
agreement. If this disagreement were caused by the experimental method we would 
expect about the same picture for the other experiments. However, the experiments 
at a higher ratio of the viscosities do agree much better with the calculations, so that 
this possibility appears not to apply. A possible explanation, that cannot be checked, 
is that it is a nonlinear effect, examples of which have already been mentioned above, 
which is more important at  lower viscosity ratio. Also the onset of turbulence as 
observed in the water layer is possibly of some importance. Finally, for the 2 in. pipe 
for the larger wavenumbers (smaller wavelengths), the lower limit (5 mm) of the 
wavelength measurement is reached, so that for these wavelengths the inaccuracy 
can be large. 

The inclusion of (weakly) nonlinear effects in the theory of the interfacial stability 
of CAF with large viscosity ratios, displaying, for example, the important effect of 
nonlinear saturation of the growth of the waves, would seem to be the next step in 
the theoretical development. 

Appendix. Neutral curves 
Equation (36) can be written 

2m3cJ+Ai’+ia3RSJ = 0. 

Assuming that the imaginary part of c is zero and introducing 2 = (ccR)ic gives, 
together with (37) and (38), 

i?( - 0.7 ha ’ )  + 2($2/3ma3) + (0.12942/3& - Q(&)i a2 S) = 0, (A 2) 

(A 3) 
b(O.177kt.R) + 2($a3 -0.3550(d?)b2 8) + ( - 0.1294d + Q2/3(&)4~? 8) = 0. 

Elimination of i? from one of these two equations gives 

q1.878X2+ (0.8132-2y)~I = (0.7290- 1 . 2 6 6 ~ ) ~ +  (O.2347y-O0.3157), (A 4) 
S+E(1.878~-22~)+(-0.7290+ 1.626~) = 0, (A 5 )  

where x = ma2/R, y = a2(ccR)lS. Eliminating 2 gives 

~ ~ ( 2 . 2 2 7  -3.31 ly)  + q0.4328 - 2.620~ + 1.764g) 
+ ~(0.4603- 1 .882~ + 2,408$ -0.9388Y9) 

+(-0.09967+0.1482~-0.05508~2) = 0. (A 6) 



116 R. Miesen, G. Beijnon, P .  E .  M .  Duijvestijn, R .  V.  A .  Oliemans and T .  Verheggen 

Neglecting surface tension, that  is, assuming that y -4 x, yields 

~ ~ + 0 . 1 9 4 3 ~ ~ + 0 . 2 0 6 7 ~ - 0 . 0 4 4 7 6  = 0, (A 7 

a: = 0.1675R/m. (A 8) 

(A 9) 

with the (real) solution x = 0.1675, so that (cf. (41)) 

This approximation is justified if y -4 x, i.e. 

S -4 m/R(uR)-i = O(mi/Rt). 

For larger wavenumbers, that  is larger x (and a small enough surface tension 
parameter S), the first term of (A 6) is the most important one, so that y x 0.6726, 
i.e. 

which is equivalent to (40). 
dR%3 = 0.6726, (A 10) 
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